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Solutions of master equations for coupled chemical reactions far from equilib- 
rium with one varying molecule species are studied and used for getting 
information about nonlinear Fokker-Planck equations and slow time-dependent 
processes such as extinction to an absorbing state and transition between several 
steady states. The Fokker-Planck equation solution is compared to that of the 
master equation in a relative sense and it is shown that they agree quite well in 
some important situations but that in general the cases can deviate considerably, 
when, e.g., accounting for the mutual importance of two probability maxima. 

KEY WORDS: Fluctuations; Fokker-Planck equations; transition rates; 
nonequilibrium thermodynamics. 

1. INTRODUCTION 

Open systems, driven far from equilibrium by actual or model chemical 
reactions, are much studied in recent times with the particular aim to 
understand new kinds of (dissipative) structures without any correspon- 
dence in equilibrium systems. Basically, these are described by chemical 
rate equations for average concentrations, i.e., deterministic equations. In 
the last years, a number of works (1-1~ have considered general stochastic 
equations for such systems in order to get a more complete picture of the 
behavior. In this work, we shall take up some further questions in that 
context. 

In principle, as in ordinary statistical mechanics, molecule concentra- 
tions are macroscopic variables and for these, fluctuations will occur 
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because of irregularities in molecule encounters. The probability functions 
describing these are, however, very sharply centered around the determinis- 
tic (most probable) values of the concentrations, and are virtually zero 
outside an extremely small region close to the deterministic values. This 
feature is considered by Oppenheim et al. (z) and more rigorous statements 
are given by Kurtz. (11) Ventsel and Freidlin (12) have considered the mathe- 
matical structure for the probability far away from the most probable 
values. From their work, it is clear that the logarithm of the probability is 
an extensive variable, a fact that also has been explored in other of the 
cited works. 

In the simplest case, there will occur one unique stationary stable 
solution of the deterministic equation which all trajectories approach in the 
course of time. There, all important physical features are given by such 
solutions and local fluctuations close to the deterministic values. The latter 
are most easily provided by the "linear" Fokker-Planck equation, (13) and, 
perhaps, most conveniently studied by making some transformation of the 
probability function. For instance, the Poisson representation by Gardiner 
and Chaturvedi (l~ seems to be very powerful for providing general mo- 
ments and correlations. 

The situation is, however, different in a more complex case with 
additional structures where a detailed description of the global fluctuations 
is necessary in order to account for the mutual relevance of these struc- 
tures. Moreover, in such cases it is quite possible that the deterministic and 
stochastic descriptions give rise to conceptually different interpretations. 

This is particular the case when there are many stationary solutions of 
the deterministic equation. This situation is studied in several works (2-4' 14) 
and one usually has several points that are stable against local changes. In 
a stochastic picture, generally described by a Markoff process, there will be 
a unique stationary probability function where such points occur as local 
maxima. Of these, one will dominate (except for certain phase coexistence 
situations) and, for a large system, together with a narrow fluctuation 
region, it will contain essentially all the probability. For any finite system, 
such a largest maximum is always reached after some time, which, however, 
can be extremely long. In order to decide which of several locally stable 
points corresponds to the highest probability maximum, it is necessary to 
consider the relative change of the probability function along a path joining 
the corresponding maxima. 

For this reason, global fluctuations become important and the most 
relevant quantity of study should be the logarithm of the probability, which 
is an extensive entity. This corresponds to a free energy (or a similar type of 
function) in equilibrium statistical mechanics, and the point of largest 
probability corresponds, of course, to the state of lowest free energy. For 
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treating problems of this type, it is important to find methods for getting 
the probability function and its logarithm also for large fluctuations, and in 
that context one should compare different means of description. These are 
among the basic aims of this paper. As a basic starting point, we adopt here 
a common view, and use master equations for describing the changes of 
molecule numbers. It seems reasonable that the basic description uses a 
discrete representation of the molecule numbers but we shall not go further 
into questions of which equation should be the most relevant one as a 
starting point. For simplicity, we will be mainly concerned with one 
varying molecule species. For this, we consider in some detail a type of 
method that seems originally to have been introduced by Kubo et aL (5) and 
later formulated for this kind of equation by G6rtz and Walls. (6) 

As said above, we shall also consider alternative equations, in particu- 
lar, the continuous representation given by the so-called nonlinear Fokker- 
Planck equation. This equation has a large potential interest since it may 
provide means for obtaining solutions and approximations also in fairly 
complex situations. However, van Kampen (13) has shown that this equation 
in a strict sense is a consistent approximation of the master equation only 
when describing small fluctuations around deterministic solutions. In spite 
of this, Horsthemke and Brenig, (7) by using arguments by Kurtz, claim that 
the nonlinear Fokker-Planck equation is a correct asymptotic representa- 
tion of the master equation. It seems that this controversy is caused by 
different viewpoints, and different meanings of the concept of asymptotic 
representation. It seems that the Horsthemke-Brenig assertion is true for an 
absolute comparison: the absolute difference between the solution of the 
nonlinear Fokker-Planck equation and that of the master equation is 
negligible for a large system provided they get the most probable point at 
the same value. Of course, as stated above, these solutions are both close to 
zero outside a local fluctuation region, and thus the latter should be the 
only region ef relevance for the statement. This is also clear from the fact 
that the Kurtz theorems do only consider the descent of the probability in 
the fluctuation region. The situation should then be satisfactory for the 
simple case discussed above of one single stationary point, but a case of 
several locally stable states is not correctly described, as also stated in 
another paper by Horsthemke et aL (4) 

An agreement in an absolute sense as that of Horsthemke and Brenig 
does not imply that the solutions are close in a relative sense, which would 
mean that their quotients would be close to 1 or that the logarithms are 
close to each other. In that sense, the van Kampen arguments are valid and 
the nonlinear Fokker-Planck equation is not in general a consistent ap- 
proximation to the master equation. As stated above, the global relative 
variation is important for the mutual relevance of several structures in the 
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probability. Thus, even if the nonlinear Fokker-Planck equation in a 
certain absolute sense is an asymptotic approximation, it cannot necessarily 
be used to judge which of several possible, locally stable points would 
correspond to the dominating maximum of the stationary solution of the 
master equation. 

We therefore put the main emphasis here upon the relative variations, 
which are studied through the logarithm of the probability function in 
general cases, and we will consider the question in what extent the nonlin- 
ear Fokker-Planck equation is a good approximation to the master equa- 
tion in a relative sense. As will be demonstrated by explicit examples, the 
agreement can in general cases be very bad, but for a large group of 
important problems, the solutions agree very well in a wide parameter 
range. In particular, this is so for most proposed models of chemical 
reactions with one varying molecule species. 

In cases like these, transformations of the probability function do not 
provide an appropriate approach since the logarithm of the probability is 
not directly available. The method by Kubo eta/ .  (5) and Gtrtz and 
Walls (6) is more suitable, and also the Fokker-Planck equation yields 
direct, simple expressions for the logarithm of the probability. (Note that 
the Fokker-Planck equation of Gardiner and Chaturvedi O~ is an equation 
for the transformed probability and has quite another meaning than the 
one here.) 

Besides studying the stationary features, we shall also discuss some 
time aspects. In the true stationary probability distribution, that always is 
reached after infinite times, one stable point survives and others are 
suppressed. However, the local stability of other points will mean that a 
probability distribution around such a point can be kept for long times as it 
is unstable only because of unprobable, large fluctuations. Such a probabil- 
ity corresponds to a metastable, decaying state, which has been studied in 
some works (2' is) as well as in the general mathematical framework by 
Ventsel and Freidlin. O2) We also consider such cases here, and try to give 
more precise methods to describe the decaying times. The latter can also be 
regarded as transition times in a case of several probability maxima. We 
also study the situation of an absorbing barrier, where the only stationary 
state is the completely absorbed situation, but where there may be a 
well-defined long-lived metastable state. In certain cases, the decaying 
times are enormously long, which means that they can be considered as 
truly stable states. Still, these times can be quite relevant for moderately 
large systems, for instance for describing chemical reactions in living cells 
where the number of reacting molecules may be of the order 103-104 or 
even less. 
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2. THE BASIC MASTER EQUATION AND ITS STATIONARY 
SOLUTION 

The basic starting point for our development will be a master equation 
of birth and death type for the probability function of the number  of 
molecules of one varying species: 

aP(n, t) R 
- [ WAn  + r ) e ( n  + r,t)  - W r ( n ) e ( n , t ) ]  (1) 

r= - -R  

P(n,t) is the probability function of having n molecules at time t. The 
Wr(n) are the probability intensities for changing the molecule number  n 
by - r in a single reaction step. r can be positive or negative, but r -- 0 is 
always excluded. R is the maximum change of molecule number, and is a 
small number  ( <  10). If R = 1 (i.e., the molecule numbers just change by 
one unit in each reaction step), we have a one-step process. 

It  is essential here that we have a large parameter, V, related to the 
total number  of molecules, or the extensions of the system. In the limit of 
infinite V, the variable x = n /V  and the functions w,(x)= Wr(n)/V 
remain finite. We further assume that, for each value of r, the wr(x ) in the 
limit turn to differentiable functions of x (e.g., polynomials). 

The number  n shall always be positive or zero, meaning that there will 
be a first equation of (1) for n = O, and that certain terms in  the first 
equations are lacking. This is achieved if we put Wr(n) equal to zero if 
n < 0 or n < r (the latter condition means that the molecule number  can 
never decrease by more than the number  of molecules in the system). The 
first R equations with this convention can be regarded as a boundary 
condition. 

We shail not consider here an upper limit of n. In principle, such a 
limit exists, but in all cases considered P(n) will go rapidly to zero for large 
n, and anyhow be virtually zero at a natural upper limit. 

We get another type of equation if the first n equations (1) are summed 
with the conventions for the lowest orders mentioned above: 

m=O ~1~ -- ~ Wp(n ~- r) P ( .  + r , t )  
r = l  p = r  

In this case, the first (R - 1) equations will lack certain terms as discussed 
above. 

This type of master equation is of the same form as used in the 
references mentioned in the Introduction. The asymptotic character of the 
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stochastic process is the same as treated by rigorous mathematical methods 
by Kurtz O1) and Ventsel and Freidlin. (12) As we will be concerned here 
about some general features of the solutions of (1), we shall not impose 
more restrictions upon the IV,. However, the features of chemical reactions 
will provide certain restrictions. For example, for positive r (molecule 
number is decreasing), W~(n) is proportional to a binomial factor (~), and is 
often (but not necessarily always) given by a low-order polynomial in n. As 
we shall see, such properties will not influence the general conclusions, but 
they may be important in a qualitative way for certain special conclusions. 

It is clearly demonstrated in the cited works that the probability 
function is almost entirely concentrated to n-values very close to what is 
given by the deterministic equation (see in particular Refs. 2, 10, and 12): 

dn(t) _ ~ , rW, (n )  -- - Oll(n ) (3) 
dt 

Next, we will look for stationary solutions of (1) or (2) when the left-hand 
sides are zero. For a one-step process, the solution becomes almost trivial 
since Eq. (2) simply gives 

0 = Wl(n + 1)P~(n + 1 ) -  W_l(n)P~(n ) (4) 

which means that detailed balance is fulfilled. We can then write 

where 

Ps(n) = expz (n /V )P~(n  - 1) (5) 

w_,(xV- 1) w_,(x- 1/v) 
exp z(x)  = W l ( x V )  Wl(X ) (6) 

according to the earlier definitions of x and %. Note that z, in general, is 
not close to zero, a fact that is important for the asymptotic properties. If 
some regularity of % is assumed, as was done above, we can separate 
contributions to z of different order in V: 

' ( ' )  z ( x )  = Zo(X ) + ~ z ~ ( x )  + o - ~  (7) 

Then, relation (5) gives the following expression for Ps: 

Ps(n) = constexp m V 

For getting this in a correct asymptotic form, the ordinary Euler-McLaurin 
summation formula is used. With the assumptions made, it should be clear 
that this provides a correct asymptotic form for Ps and that the limit of 
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On P ~ ) / V  is a well-behaved function of x. That limit will obtain extremal 
values when Zo(X ) = O, i.e., when Wl(X) = w _  l(x) ,  which is the condition for 
the deterministic equation (3) to have a stationary point. 

In a general case, one should expect the same asymptotic form for the 
probability function. This is considered in some detail by Kubo et al. (5) 
and is shown rigorously for stochastic processes with these asymptotic 
features by Ventsel and Freidlin (12) (although their description of the 
process is different from the one here). Because of this asymptotic property, 
one should expect a relatively simple behavior in ln P, and thus put the 
emphasis upon functions determining this logarithm. This was considered 
in the cited work by Kubo et al. and later reformulated by G6rtz and 
Walls. (6) In their method, one expects a relation of type (5) to be valid, and 
that z becomes a simple function such that (7) and (8) are still meaningful. 
If one uses (5) in Eq. (1), and considers the lowest order of the asymptotic 
contribution, one gets an equation for z 0 of the form 

R 

w r ( x ) ( e x p [ r z o ( x ) ]  - 1} = 0 (9) 
r =  - - R  

r ~ 0  

If, instead Eq. (2) had been used, the following equation is obtained: 

= 0 (10)  

As an equation in y = exPz0, (9) is an equation of degree (2R + 1), and 
always has a solution y = 1. This solution is absent in (11), which is one 
degree lower. Otherwise, the equations are equivalent. For certain general 
considerations, (9) is more symmetric, and can therefore be preferable. In 
principle, every z o solution of (9) or (10) can give rise to a contribution to Ps 
of the form (8). The following features which have not been shown before 
are demonstrated in the Appendix: 

(a) Besides the solution z 0 = 0 of (9), there is one unique, real 
solution of (9) or (10) which is the only one that can correspond to a 
meaningful physical function. 

(b) There are R - 1 complex z 0 solutions with real parts larger than 
z 0 and zero. 

(c) There are R - 1 complex z 0 values with real parts less than z 0 and 
z e r o .  

(In the last cases, we do not count those that are obtained by adding 
2~i to other solutions.) We shall refer to these as solutions of type a, b, and 
c, respectively. As Eq. (10) is a low-order equation iny,  and there will never 
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be any solution approaching the physical one, this solution (type a) is a 
well-behaved function of x. It should be clear that the corresponding 
contribution of form (8) really fulfills the basic master equation. This will 
also be the case for corresponding contributions from the other types of 
solutions. Naturally, the solution shall be uniquely determined by the 
master equation and boundary conditions, which in this case means that 
the solution shall be extended down to the lowest order in order to fulfill 
the first R equations of type (1) or (R - 1) equations of type (2). Further, it 
is necessary that P go to zero for large values of n. The latter property 
immediately forbids the occurrence of contributions of type-b solutions 
with large real parts of the z o ,  yielding ever-increasing contributions. 
Further, such a contribution would lead to P functions that alternate in 
sign. However, the smaller type-c solutions cannot be outruled and they 
are, in fact, necessary when the probability function is extended to lowest 
order. Then, one should have a linear contribution: 

= (11)  

This sum includes R -  1 contributions from the type-c solutions and as 
there are R -  1 equations of the lowest orders of type (2) with some 
coefficients put equal to zero, the corresponding A i coefficients in (11) will 
be completely determined. How this can be done is shown by explicit 
examples at the end of this section. As the real part of these solutions is 
always negative, the corresponding contribution in (11) will go rapidly to 
zero and one is left with the physical contribution. (As the solution of the 
master equation should be unique and our obtained solution fulfills the 
correct asymptotic features, it must be the correct solution of the problem.) 
We also mention that because of the solutions of type b, any direct 
numerical calculation of the Ps from (1) or (2) by a recursion procedure is 
bound to fail as there will always be a small contribution of these solutions, 
originating, e.g., from rounding errors, which eventually will dominate, and 
lead to a completely wrong behavior. It can easily be checked that any 
starting values will soon yield a wildly oscillating function corresponding to 
the solution with largest real part of z 0. 

Once we have calculated the lowest-order z 0 from (9) or (10), it is 
possible to get a correction term, zl, defined in (7). We put 

and 

z(x + zo(x  + lzl(x  + + o( ) 
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Relation (5) yields: 

P(n  + r) = exp 2 z ( x  + ~ P(n)  
L p = l  \ 

(14) Jr-'/ P(n  - r) -- exp - ~ .  z x -  P(n)  
p = O  

If (13) is used in (14), then these expressions together with (12) in Eq. (9) 
give the following when contributions in different order in V are separated: 

2 w}l)(e rz~ - 1) + rw} ~ + - -  w}~ e re~ 
r = - R  2 

zl  = - R ( 1 5 )  

rW(r~ rz~ 
r =  - - R  

We note that, at a stationary point x s where ~rw~ ~ = 0 and z 0 = 0, the 
denominator vanishes. However, then also the upper part vanishes and the 
expression goes to a well-defined limit. This follows from the expression for 
Zo(X ) when x is close to xs. If (9) is expanded in powers of z 0, one gets 

~ OLp(X)Zg- 1 = 0 (16) 
p = l  " 

where ~ is the p th  moment of w~~ 

R 

r w}0>(x) (17) 
r =  - -R  

At x = x~, al(X,) = 0. The first terms of (16) give 

Zo(X ) = - 2  al(x~) 4 aa(x)a2(x) + O(a~) (18) 
 2(x) 3 

(18) can be regarded as a power series in a 1 . In the limit when a I goes to 
zero, (18) and (15) yield 

~ - ~ + 2 ~  1> 2 ~3~  
z, = - a2 3 a~ + O(oq) (19) 

a~ x) = ~rw~ l). Note that z I always is of order 1. Through (8), its contribu- 
tion to In P is also of order 1, which is much smaller than the corresponding 
contribution from z o. In the important region where a 1 and z 0 are of order 
1/vrV, the contribution of z 0 is of order ~/-V. The behavior of lnP~ is then 
always dominated by z o, given by Eqs. (9) or (10). (This is by no means 
self-evident. The corresponding correction term to the root z 0 = 1 of (9) is 
of order ~ in that region.) 
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In  the following examples  we show the features of the described 
method  for obtaining the s ta t ionary probabi l i ty  funct ion in two models.  

Example  A. In  the first example,  we consider a case where all wr(n ) 
are of order  unity when n~ V<< 1, and  there can be put  as n- independent  
constants.  We  put  R = 3 and  w 3 = 4, w 2 = 2, w 1 = I, w_ 1 = 26, w_ 2 = 13, 
w_ 3 = 14. The  Eq. (10) f o r y  = e ~~ becomes  

4y 5 + 6y 4 + 7y 3 - 53 9 - 27y - 14 = 0 

with roots Y l = 2 (the physical  one), Y2,3 = - 3 / 2  _+ i (J ] - f f /2)  (the unaccept-  
able ones of type b), andy4 ,  5 = - 1 / 4  _+ i(~/~/4)  (the ones of type c). The  
two first equations of (1) are 

4P(3 )  + 2P(2 )  + P (1 )  - 53P(0)  -- 0 

4P (4 )  + 2P(3 )  + P(2 )  - 54P(1)  + 26P(0)  = 0 

We  put  P(n) = cons t2  n + (a + ib)y~ + (a - ib)y~ and determine a and  b 
f rom these equations.  In  the higher-order  equations this expression is 
automat ica l ly  a solution. One gets 

p ( n )  = const (2  n 11 1 2~rn 73 1 2 _ ~ )  
53 2 n cos --if- 159v~- 2~ sin 

This is the complete  solution which avoids Y2 and Y3- The  two last terms 
will soon be negligible compared  to the first one. 

Example  B. In  realistic models  of chemical  reactions, it is generally 
valid that  W/(n) (the rate with which r out  of n molecules s imultaneously 
fo rm another  molecule)  is propor t ional  to (7) (or to a higher expression), 
while W_f in )  at  least for small n, can be put  as constants.  We  consider 
R = 2 and  put  

W 2 = ax (x  - 1 / V ) ,  W 1 = bx, w_ 1 = r  W__ 2 = d 

Eq. (10) is then 

y3ax2 + y2(ax2 + bx) - y ( c  + d )  - d = 0 

The solutions are to lowest order  in x 

[ b 2 + 4 a ( c + d ) ]  1 / 2 - b  1 
- (the physical  one) Yl ~ 2a  x 

[ b E + 4a(c + d )  ]l/2 + b 1 
- (the one of type b) Y2 ~ -- 2a  x 

d (the one of type c) Y3 ~ c + d  



Some Properties of Stochastic Equations 83 

The first equations are 

2a 
V(2) ~-~ + P(1) - P(O)(c + d) = 0 

6a 2b _p(1)(c+ . b ) .  e(3)  + e(2)  -V a e(0)c = 0 

and for n > 1 (n << V) 

(n + 2)(n + 1)a (n + 1)b 
P(n + 2) V2 + P(n + 1) V 

[ nb n(n-1)a  1 - e ( n )  c + d + --~ + V2 + P ( n  - 1)c+P(n-2)d=0 

To lowest order in 1/V, one finds two solutions of all equations: pO) 
= const(y~Vn/nl) and p ( 2 ) =  const(y~Vn/n!). The first corresponds to 
the physical Yl, and is the acceptable solution. A contribution from p(2~ 
must be avoided. In this case, Y3, the absolute value of which is always 
much lower than Yl, never does give a significant contribution. 

3. THE FOKKER-PLANCK EQUATION 

As x = n~ V turns into a continuous variable when V goes to infinity, 
it is tempting to look for an asymptotic differential equation of diffusion 
type for P(n)= Pv(x). Such a description is provided by the so-called 
nonlinear Fokker-Planck equation. (Certainly, this notation is not quite 
appropriate as it is a linear partial differential equation with coefficients 
that are nonlinear in the independent variables. However, since it is 
commonly known under this name, we shall use it here.) There has been 
some dispute during the last years about the relations between this equation 
and the master equation (1), and our aim here is to try to clarify the 
situation by looking at the basic arguments and by comparing, in a direct 
way, solutions of the two equations. 

The nonlinear Fokker-Planck equation (which we refer to as FP) is 

oev(z,t) 1 
o t  - oz ox2 (20) 

a I and a 2 are the first and second moments, respectively, defined in (3) and 
(17). This equation is obtained from the master equation (1), if one writes 
the arguments n + r as x + r~ V, and makes a Taylor expansion to the 
second order in the small terms (r/V). (See also below, where this proce- 
dure will be discussed.) 

Now, van Kampen (]3~ has argued that this equation is not a consistent 
approximation of the master equation, while Horsthemke and Brenig, G~ by 
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using arguments of Kurtz, O~ have suggested that (20) indeed is a correct 
asymptotic representation of the master equation. These statements seem to 
be quite contradictory but, as already discussed in the Introduction, this is 
partly due to different views of comparing the solutions and they are not 
necessarily incompatible with each other. The Horsthemke-Brenig meaning 
of asymptotic representation should be interpreted in an absolute sense 
such that the corresponding probability functions shall be close to each 
other, i.e., 

l e M E ( x V )  - (x)l  

is small when V is large in a way that motivates the use of a diffusion type 
of equation. (The superscripts indicate the respective basic equations.) As 
pointed out several times, the probability function is essentially different 
from zero only in a small neighborhood of the most probable value, which 
means that the comparison is relevant just in that region as every function 
that is close to zero may fulfill the requirements outside that region. (Since 
we will here be mainly concerned with the relative comparisons, we will not 
go any deeper in questions about the complete meaning of the absolute 
comparison.) 

Now, for probability functions of the type that occur here, the fact that 
the solutions of the two types of equations are close to each other in an 
absolute sense does not imply that they are close in a relative sense, which 
would mean that 

P~P (x)I pME(xV) 

is close to I. As discussed above, the limit of (InP)/V shall exist for 
processes of this type and a necessary requisite for the relativc agreement is 
that these limits bc the same: 

I [lnp~V(x) - lnpME(xV)] V_~oo--->O (21) 
P 

Again, this is a much stronger requircment than the absolute absolute 
agreement. In fact, (21) is never cxactly fulfilled except at the extremal 

points of the probability. 
This should have been clear from van Kampcn's O3) work, but as the 

point has not been completely settled, wc shall briefly discuss some points 
here. In fact, the arguments of the first section as well as thosc in the cited 
works show that we have relations of the form 

Pv(x + 1 / V )  = P(n + 1) = eZ("+l)Pv(x ) 

where z in general is not close to zero (even in the limit). Thus, Pv(x + 
1 /V)  is never close to Pv(x) in a relative sense. (In an absolute sense, both 
are very close to zero, except for x near extremal points, and this compari- 
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son is not relevant.) Then, again in a relative sense, Pv(x  + p~ V) - Pv(x)  
is not close to p[Pv(x  + l / V ) - P v ( x ) ] ,  where p is a number of order 
unity. In this sense, a definition of a derivative as 

P v ( x  + 1 / V )  - P v ( x )  
P~(x )  = 1 / V  (22) 

is not appropriate and a differential equation as the FP that is based upon 
such a definition cannot be asymptotically correct. It can still provide a 
consistent equation in regions where z is close to zero, which is the case 
close to extremal points. [The relative sense for the differences above 
should mean that one rather compares expressions like P(x  + p / V ) /  
P(x )  - 1. In an absolute sense, all quantities are close to zero except close 
to extremal points. In that sense, (22) is meaningful as the expression is 
virtually zero.[ 

It is easy to see where the arguments for a nonlinear Fokker-Planck 
equation run into trouble. The equation is obtained from the Kramers-  
Moyal expansion based upon a Taylor expansion of the right-hand side of 
(1): 

W,(n + r)P(n + r) - W, (n)P(n)  

[ r r 1 = v w.(x + + w . ( x ) , . x )  

~ 1 r m ~'~ 
= V~==, m! V m Ox '~ [ % ( x ) P v ( x ) ]  (23) 

This looks like a power series in 1 /V,  which fact has been used for 
breaking the sum after two terms. However, it follows from the earlier 
arguments that for a derivative according to (22), ~ P v ( x ) / a x  = O(VPv)  , 
and that for a general derivative, 3mPv(x) /axm = O(VmPv). Thus the mth 
term in (23) is of order VV-mVmPv  = VP v. All  terms in the Kramers- 
Moyal expansion are of the same order in V. This is essentially the van 
Kampen argument, and shows that, in this sense, the FP is rather an ad hoe 
approximation to the master equation. [Note that the factor Pv in the 
orders above signifies the relative sense. Horsthemke and Brenig, whose 
work should have another interpretation, do not use the expansion (23), 
although some of their arguments seem to be related to this.] 

As stated in the Introduction, if there is one maximum of the probabil- 
ity function and no other important structure, all important features follow 
from the behavior close to the maximum. In this case, any knowledge of 
the relative behavior of the probability function far from the maximum is 
certainly irrelevant. Then, the absolute comparison is sufficient and the 
functions given by the master equation and the Fokker-Planck equation 
describe both all-important features in the same way. 
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However, if there are several structures, e.g., two probability maxima, 
it is important for judging their mutual importance to follow the relative 
variations over intermediate regions. Then, if (21) is not at least approxi- 
mately fulfilled in these intermediate regions, one cannot decide which of 
two maxima is the highest. This fact is clear also in the second work by 
Horsthemke et al.,O) where multiple structures are concerned. 

For this reason, it seems important to consider the validity of (21) far 
from probability maxima. As discussed by Horsthemke and Brenig, the FP 
always contains some important qualitative information of the probability 
function, and the appealing features of the FP makes it relevant to ask 
when the solution of the FP is a good approximation to that of the master 
equation also in a relative sense. We now discuss that problem, and our 
main criterion will be that (21) is approximately valid. 

We shall here confine the discussion to the one-variable case and the 
stationary solution, that is given for the master equation by the methods of 
Section 1. For the FP of (20), the stationary solution is given by 

P(x)=c~ x2al(~)a-~ d~] (24) 

This is of the same form as (8) with - 2 a l / a  2 in the place of z 0. In an 
expression as (23), these quantities shall be compared. From the expression 
(18), it is seen that this term is the same as the first-order contribution to z 0 
close to a probability maximum. (It should be clear from the earlier 
discussion that the solutions should agree in that order.) The second term 
of (18) 

4a3 a2 

3~ 
describes the first deviation of the FP solution when going away from the 
maximum. One should therefore expect the FP equation to yield a good 
approximation in a parameter range where a 3 and a ] / a  2 are small (oq is 
small close to the maximum, and should be represented by its derivative.) 
In particular, this is the case for a one-step process where ~3 = ~1 and thus 
also vanishes at the maximum. In that case, the comparison can be made 
very precise. By using (6), we have 

W _ I / W  1 = e z 

so that 

- 2  a l  = 2 w- l  - wl - 2tanh ~ (25) 
OL 2 W _  1 --1- W 1 

Clearly, this is never equal to z unless z = 0, but they are approximately 
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equal in a fairly large range (owing to the rapid convergence of series 
expansions for hyperbolic functions.) The relative deviation 

z 1 
2 t anh (z /2 )  

is 0.001 for z = 0.11, 0.01 for z = 0.35, and 0.1 for z = 1.11. The relative 
difference between the logarithms of the probability functions, normalized 
according to the maxima, will be still better. The conclusion is that the FP 
expression yields a good approximation for the solution of the master 
equation of a one-variable one-step process as long as the absolute value of 
the parameter z is less than about 1. If z becomes much larger than 1, the 
agreement will disappear completely as (25) tends to cut off large z values. 
This is apparent in one of the examples below. 

In this way, the comparison between the two types of equations can be 
made very directly, and we will show that in three examples. 

It is important to note that, for a large number of models, z will never 
be large in important intermediate regions where the relative variation is 
essential. Then, the results from the master equation and the FP can agree 
quite well. In fact for a simple model of two probability maxima and a 
minimum in between, based upon chemical reactions, such as the Schltgl 
model (treated in Ref. 4 and our Section 6), w 1 and w_ 1 are low-order 
polynomials in x. For the extremal points, a I is zero. This fact and the one 
that w 1 and w_ l must be positive will in all models lead to the fact that z 
never is large, and commonly much smaller than 1. We come back to this 
feature in Section 6, and this is the reason that Horsthemke et al.(4) find an 
extremely good agreement between the two types of solutions. (Still, the 
expressions are not exactly the same and the qualitative discussion in that 
work cannot account for the agreement.) 

For a general type of process (i.e., not a one-step process), a 3 does not 
vanish at the probability maximum and the agreement between the solu- 
tions is less controlled. For certain models, the FP can still be a good 
approximation, but in other cases it may well be possible that the linear 
Fokker-Planck equation (were a 2 is put equal to a constant and o~ 1 equal to 
a constant derivative times the deviation from the extremal point) is better 
than the nonlinear equation. 

To show these features, we consider three examples. The first is a 
simple one-step process, where we show that the agreement between the 
solutions of the two equations is very good in a large range. The two other 
examples are constructed to show cases where the agreement is bad. The 
second example includes a step where three molecules change and in that 
case there is no control of the solution of the FP as compared to that of the 
master equation. We note that this is a model that contains only one 
maximum and therefore the disagreement would be less relevant according 
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to the discussion above. However, in order to get information about the 
relative agreement, the information in an intermediate region would be lost 
in the FP. The third example contains two probability maxima and shows 
that, in a general case, the master equation and the FP can yield completely 
different results. In that case, w_ 1 and w I are given by exponential 
functions, which makes it possible to get a greater variation of z. This 
model is not given by a chemical reaction scheme, but, as said above, the 
general arguments are not limited to such cases. In fact, only a demonstra- 
tion of this case can fully motivate the good agreement in the Schl6gl 
model. 

E x a m p l e  C. The  reaction 

k] 
X -~ A 

k2 

with the concentration of A constant is one of the simplest ones to describe. 
We put w ~ ( x ) =  k lX  = x,  w _ t ( x  ) = k2a = 1. x = n x / V  is the concentration 
of X, a that of A. The complete solution to the master equation according 
to (8) is simple: 

Vnx _ 
p ( n x ) = _ _  e v (26) 

z o is - l n x ,  - 2 a l / c t  2 = 2(1 - x) / (1  + x). If the integrals in l n P  are taken 
from the maximum x = 1, we get 

flXzod~= -xlnx + x -  1, ( x 2 a !  d ~ = a l n  x + 1 2 ( x -  1) (27) 
at ctz 2 

These functions are shown in Fig. 1. The relative difference is about  2% 
when x = 2 or 0.5, and even when x is as different from 1 as 5 or 0.15, the 
relative difference is not more than 10%. 

Example D. Consider a more complicated scheme: 

k~ 
3 x ~ a  

k2 

B--~ X 
k3 

where A and B are held constant. We put 

w 3 = k l n 3 x / V =  6x  3 

w _  3 = k 2 a / / V =  1 

W 1 = k 3 b / V =  15 
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X x 

-1 ~ ~  

i, 
Fig. 1. Comparison between the logarithms of the stationary probability function for the 
master equation ( ) and the nonlinear Fokker-Planck equation ( . . . .  ) for the model in 
example C, formula (27). 

The method of Section 2 is used, and Eq. (10) f o r y  = e* is 

(y5 + y 4  + y 3 ) 6 x 3 _  16 9 _ y _  1 = 0 (28) 

This shall then be compared to the FP expression 

ZFp = - - 2 0 / 1 / 0 ~  2 ~-~ 6(I - x3) l (9x  3 + 4) (29) 

and is also compared to the linearized expression 

z, = 2(I - x)ai(1)/a2(1 ) = 18(1 - x) /13 (30) 

The expressions are shown in Fig. 2. It is seen that ZFp of (29) is never a 
good approximation and that close to x = 1, (30) is indeed better. For 
x ~> 0.8, the correct z of (30) is always closer to z 1 of (30) than to ZFp of 
(29). 
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-1 

1 % .  

% 

Fig. 2. Comparison between the different expressions of example D. ( ) is obtained from 
the master equations, Eq. (28), ( . . . .  ) from the nonlinear Fokker-Planck equation, Eq. (29), 
and ( �9 �9 - ) from the linear Fokker-Planek equation, Eq. (30). 

Example E. A one - s t ep  p ro c e s s  is c o n s i d e r e d  wi th  

W-l(x) = exp[ 50e-4(x-2)2+ 29x2 + 75 J 2 0 0 0  
(31) [ x +1~ ] wl(x ) = exp 50xe-4(x-2)2 + - -  

2000 

T h e  c o r r e s p o n d i n g  z 0 is 

[ ( x  - 3 ) ( 1  - 25) l z 0 = In w _ ,  = ( I  -- x )  50e -4 (x -2 )2  + (32) 
w I 2000 

F o r  these,  the  m a s t e r  e q u a t i o n  so lu t i on  of (8) a n d  the  F o k k e r - P l a n c k  
so lu t i on  of (24) a re  c a l c u l a t e d  b y  n u m e r i c a l  i n t eg ra t ion .  W e  show the 
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Fig. 3. The solution of the master equation ( ) and the nonlinear Fokker-Planck 
equation ( . . . .  ) for the model of example E. The figure shows ln[P(x)/P(1)] for the two cases 
and the main emphasis should be put on the quite different appearance of the first peak at 
x = l .  

expressions 

(I/V)[InPv(x ) - InPv(1)] (33) 

in Fig. 3. (x =- l is the first peak of Pv.) 
The probability function has two maxima, one of which occurs at 

x = I, and the other vcry close to x = 25. For the master equation solution, 
the first peak is the dominating one. It is fairly narrow and very steep. The 
second maximum is much broader. Because the FP cxpression cuts off 
large z values, it cannot show a very stccp change of the probability. The 
first peak is thcreforc greatly reduced in thc FP expression and thc second 
peak will dominate the expression. In the limit of large V, p ME and P FP 
will show peaks with essentially all of the probability at quite diffcrent 
places. 

Wc remark finally that the w_ I and w I are choscn to give a simplc 
cxprcssion of z 0. From general grounds, one cannot argue that this choice is 
peculiar in any way. Rather, the polynomials of chemical reactions are 
special choices since a positivcly definitc polynomial of low order gets 
severe restrictions on the variation possibilities. 

4. EIGENVALUE FORMALISM FOR THE TIME DEPENDENCE 

In the last sections we shall consider time-dependent solutions of the 
master equation (1). An appropriate and systematic way to treat the 
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problem is to write the probability function as a sum of eigensolutions: 

e(n, t) = es(n) + ~ Pi(n)e- vv, t (34) 
i 

Ps is the stationary solution, treated in the earlier sections. (We omit cases 
that lack normalizable stationary probability functions.) Pi is the eigenfunc- 
tion of the equation: 

-- VTiPi (n)  = s [ W r ( n  + r)Pi(n + r) - Wr(n)Pi(n) ] (35) 
r 

"/i is an eigenvalue with the meaning of inverse relaxation time. The factor 
V is used for proper scaling, We will mostly be interested in small 7 values, 
corresponding to slow decay of metastable states. 

We have a requirement that the sum of all probabilities is 1 at all 
times. As P~ is what remains after long times, it must be valid that 

1 = ~ P ( n , t )  = ~Ps(n)  and ~Pi (n )  = 0 for al l /  (36) 
n ~/ n 

In this case, the contributions Pi(n) are not positively definite, which, 
however, must be the case for the total probability P(n, t). The condition 
(36) together with the master equation is sufficient to determine the 
eigenvalues. 

An ansatz of the form (5) can still be used, and the resulting equation 
for z 0 [el. (9)] is 

R 

wr(x)[exprzo(x ) - 1 ]  + 7 = 0 (37) 
r ~  - - R  

In this case, there is no simple equation corresponding to (10) and the 
solution corresponding to z 0 = 0 in (9) (call it type d) cannot be eliminated 
here. In fact, that solution will become mixed with the physical z 0 (of type 
a) in certain regions, where this method loses its meaning. 

This will in particular occur close to extremal points of Ps, where 
al(x ) = 0. At such a point, ~Wr(exprz o - 1 )  has a double root, z0= 0. 
Close to this point, the sum can be approximated by the second derivative 
expression a2z~/2, and (37) becomes 

(1/2)a2z 2 + y = 0 

The eigenvalues ~, must always be positive in an equation of type (35), and 
therefore this equation cannot have any real solutions. Thus z 0 cannot be 
determined in this way in such a region. Fortunately, a region close to a 
stationary point of this kind can be treated by a number of other methods. 

In particular, in this region, the linear Fokker-Planck equation is 
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justified. For the eigenvalue problem, one has 

, d (38) - ~/P(x) ~-. o/l(Xs) -~x [ ( x  - x s ) P ( x )  ] -1- o/2(Xs) d 2 e ( x )  
2V dx 2 

The important problem is to follow P(x) across x r This can be done by 
analytic methods and the equation is already met with in a description of 
Brownian motion. (m The solution of (38) can be written in terms of 
parabolic cylinder functions, U and V. (2~ We put 

(2a~V)  1/2 
= - -  ( x -  xs) and A = yla](xs) (39) 

O/2 

The solutions of (38) are 

e -~2 / 'U( -1 /2 -A ,~)  and e - ~ 2 / ' V ( - I / 2 - A , ~ )  
The asymptotic expressions for large, positive ~ (~ ~> 3) are 

e-~/'U( - 1/2 - A, ~)~e-~/2~ A 
(40) 

e -~2/'V(- 1/2 - A, 0--~(2/~r)'/2~ - , -A  

The first corresponds to the contribution of the physical z 0 solution, the 
second one to the type-d contribution. When ~ < 0, the expressions are 
mixed: 

e-~=/,U( _ "21 _ a,~)~cosa~re-U/=[~[a + --r(- a)  181-'-* 

e-'2/'V ( - -21-A")--c~ 2 ) 1/21'I-I-A sin2rrA 

(41) 

These expressions are valid for small "/values. Thus even if we start (for 
> 0) with a pure U function, there will be a contribution of an unwanted 

kind in the last term of (41) for negative ~, If 3' is small, the coefficient is 
small, but it will always dominate at large enough ~. Clearly, the contribu- 
tion disappears if 1 / F ( - A )  = 0, i.e., A is an integer, in which case, we get 
solutions of Hermite function type. If the negative ~ values correspond to 
an intermediate region between probability maxima, contributions from the 
last term in U in (41) can be allowed. They should, however, not occur in 
regions below the lowest maxima or above the highest one. 

The eigenvalue formalism for decaying states has been used by Tomita 
et al. 05) for treating the Fokker-Planck equation, and the crossing problem 
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encountered here is treated for that equation in a subsequent paper by 
Leimar et al. (17) 

. A MODEL OF AN ABSORBING STATE 

The typical reaction yielding an absorbing state contains two kind of 

kl  

X + X - ~ A + X  
k2 

X - - ) B  
k3 

The number of A molecules is kept constant. One has 

W~(nx) = klnx(n~ - 1) + k3n x 

W_, (nx )  = k2nan x (42) 

Without any loss in generality, we simply write 

Wl(nx) = n2x/V, W_  l(nx) = n x 

The only stationary possibility is a state without any X molecules, i.e., when 
P(0) = 1, and all other P(n)  = 0. We now look for a decaying state of the 
form of (34) with P(n,  t) = 8n, o + P l (n )e -  vyt + higher-order terms. As will 
be seen, there is always a very small ,/eigenvalue. The equation for PI(0) is 

~p](0) = 1 pl(1 ) (43) 

As done for Eq. (2), we can sum Eq. (35) to order n, and obtain 

- ' /  ~ PI(m) = 
n 2 

"fin Pl(n  + 1) -- ~ Pl(n)  (44) 
m = 0  

Further, (36) shall be valid: 
oo 

e~(o) + ~ e~(n) -- 0 (45) 
n = l  

This is equivalent by demanding that PI in (44) shall go to zero for large n. 
If it is not fulfilled, the left-hand side is not zero, and P1 would not go to 
zero. Since P(n,  t) is positive, it is necessary that all Pl(n) with n larger than 
zero be positive. ~ P l ( n )  = - PI(0) is then positive, and will be much larger 
than PI(1). From (43) then follows that y must be very small. In fact, for n 
from 1 and passing the maximum of P where n = V, the left-hand side of 
(44) is very small compared with the other terms, and can be neglected. 
Because of (45), the left-hand side goes to zero at large n, and it can be 
neglected in all equations but the one with n = 0, i.e., (43). (This procedure 

processes (8) : 
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is completely confirmed by the result below.) By recursion, one finds 

Vn-I 
e l ( n )  - e l ( l )  

Thus (see, e.g., Ref. 20) 
oo 

(46) 

E P l ( n ) -  PI(1) V------i- e v (47) 
nffil 

Ei is an exponential integral and the last expression is valid for V >> 1. 
Equations (43) and (45) give 

1 PI(1) P,(1) 
- oo - Ve - v  (48) 

"/ = V P I ( 0 )  V ~ P l ( n  ) 
1 

The relaxation time for this state is 1 /Vy = e g / V  2. For times up to that 
order of magnitude, the probability function Pl(n) with a maximum at 
n = V will sustain. This time is extremely long even for moderately large 
systems. If V =  100, one gets 1/V'~ = 2.7 • 1039 time units. The time unit is 
given by molecular reaction times, and even if it is as small as 10-13 sec, 
one sees that 1/VT is 8.5 • 1018 years! The obvious conclusion is that even 
in a relatively small system of about 100 molecules, although P](n) is not 
stationary in a strict sense, it must be considered as truly stationary in a 
physical sense, and will not decay within any meaningful time scale. 

This resolves the dilemma that the deterministic equation yielding 
n = V as the only stable point and n = 0 as a stationary but unstable point 
seems to be in conflict with the stochastic approach, where the extinct 
situation is the only strict stationary state. The answer is (this has also been 
discussed in Ref. 3 in a somewhat different manner) that the deterministic 
equation shows stability with respect to small fluctuations and the extinct 
state (n = 0) does not allow any fluctuations at all. It is indeed stable, but 
any initial molecule number different from zero will most probably give rise 
to a Pl(n) distribution as discussed, which in a sense is stationary and 
where n = V is a stable maximum. 

We also mention that, besides Ref. 3, probabilities of events of this 
kind are also estimated in the work by Wentsel and Freidlin. (12) By the 
particular model used here, the decaying time can be calculated more 
precisely. 

6. TRANSITION BETWEEN STABLE STATES 

We now consider cases where the deterministic equation allows several 
stable points [where a l(x) = 0]. The typical example is the Schl6gl model (14) 
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for coupled reactions: 

kl k3 
X < ~ - A ,  3X ~<-~- 2X+ B 

k2 k4 

The A and B concentrations are assumed to be constants. One has 

Wl(n,:  ) = k i n  . + k3nx(n  x - 1)(n x - 2) 

W _ , ( n x )  = k2a + k4bnx(n x - 1) 

This model has been studied in several works partly because it shows a kind 
of phase transition and a critical behavior (see Refs. 4 and 18). 

Here, we shall consider the transition between maxima as described by 
the eigenvalue formalism described above. The same problem, when formu- 
lated by the nonlinear Fokker-Planck equation, has been considered in 
some works. This can be treated by a method due to Kramers. (19) Pro- 
caccia and Ross (9) use essentially Kramers' method for the transition time, 
and Tomita et al. (15) use an eigenvalue method, which leads to the same 
result. This problem is also considered by Leimar et al. (17) We shall here 
consider the master equation by an entirely different treatment which, 
again, leads to the same result. (It should be pointed out that stochastic 
descriptions of a bistable model are subject to much interest at the moment, 
and here are only mentioned a few references that are most relevant for the 
present work.) 

We shall consider a general one-step model with given W 1 and W_ l- 
The equilibrium probability, Ps, is then directly given by (8). We assume 
that it has two maxima at points n = n 1 and n 2 (n I ~ n2), which are referred 
to as stable points. Between the maxima, there is a minimum at n = n 3. 

As in the model of the previous section, there is a unique, very small T 
value (this is confirmed by the results). It contains all information about the 
transition between the stable points. For sufficiently long times, all contri- 
butions to P ( n ,  t) given by (34) except the stationary state and the most 
long-lived one are extinct. Then, we have 

e ( n ,  t) = Ps(n)  + P , ( n ) e - v , t  

where Pl fulfills 

e l ( n )  = 0 
n=O 

We shall use an equation of the same type as (44) for P1, which is given by 
summing the first n equations of (35): 

wl(n + 1)el(n + 1) - w_ l (n)Pl(n)  = - ~ '  ~ el(m) (49) 
m=0 

For not too large systems, this eigenvalue problem can easily be solved by 
treating the equation by recursion methods. Figure 4 shows the functions 
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Fig. 4. The eigenfunctions for the probability function of the three lowest y eigenvalues of 
the master equation for the Schl6gl model. The constants are chosen such that k 3 = V -2, 
WI(XV ) = W_  ](xV + 1) for x = i, 3, and 5, and V = 20. The eigenvalues and functions are 
calculated directly from (49). 
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Ps, P1, and the next contribution to (34), P2, calculated in this manner for 
the Schl6gl model. 

We now consider (49) for large systems, and look for a u value much 
smaller than the w functions. The right-hand side is then small compared to 
the other terms up to and about n 1 . In that region, P1 is almost propor- 
tional to Ps. When n varies between n 1 and n2, P1 shall change sign and the 
right-hand side will then yield an essential contribution. (Compare the 
earlier discussion. In the terminology of Section 4, this means that the 
type-d solution becomes important.) Later, [Pal increases and the right- 
hand side is again small compared to other terms for n around n z and for 
larger values, where the sum goes rapidly towards zero. 

We next show how to calculate PI between n 1 and n z. There should be 
one contribution proportional to P~ according to the discussion above. 
When ~, is small, one can expect that another contribution is proportional 
to ,{, and therefore write 

Pl(n)  = P,(n)  + , /P'(n) (50) 

We use the expression (8) for Ps. Thus with e z = w_ l / w t ,  

P~(n) = Cexp ~ z ( m )  
m= O 

where C is a constant. Equation (49) then becomes an equation for P ' .  If 
terms of order , / a re  neglected, 

l e ' ( n  + l) = ez(n+l)p'(n) - W l l ( n  + 1) s Cexp (51) 
m I =0 L ~ 

By a recursion procedure, one finds the solution as 

k m~-~ 1 I n m2 1 P ' ( n ) = -  C exp ~ z ( m ) -  ~=mZ(m) 
m2=0 rnl=0 wl(m2) m=0 m (52) 

= - P o ( n ) ~ .  2 1 exp - ~ z ( m )  
m 2 m 1 wl(m2) m = m ,  

(The expression can be confirmed by direct insertion and proved by 
induction.) A typical z function is shown in Fig. 5 (this is calculated from 
the Schlrgl model). It is negative between n I and n 3. Because of this, the 
largest terms of the double sum are those where the exponential contains as 
many positive terms as possible, and few negative ones, i.e., when rn 1 ~ n 1 
and m 2 ~ n if n < n 3, or m 2 ~ n 3 if n > n 3. Close to n I , we write 

m - -  /'/1 z(rn) ~ 2ai (n ' )  (m - ?tl) ---~ - -  

o1 
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Fig. 5. The Zo(X ) of the Schl/)gl model with the same constants as in Fig. 4 (except that V is 
assumed to be very large). 

which defines 01 (which is positive). Close to n 3, we can correspondingly 
write z (m)  = - ( m  - n3) /o  3. We further put 

$13 -- exp - z ( m )  - P,--~I--- 1) ~ P~(nl-- ~ 

When m l  , ~ / / 1 ,  m 2 ~ , H  3 

m2 n3 ( m  I - -  n l )  2 ( m 2  --  //3) 2 

- ~ z ( m ) ~  - ~ , , z (m)  201 203 
ml nl 

In (52), the m I and the m 2 sums can now be replaced by integrals, and we 
get for n > n 3 

( Ps(//)S13wll(n3)r dxldX2exp 2~ 203 (53) P ' ( n ) ~  

= - Ps(/ /)S13wll(n3)2~(o,o3)l /2 

For large systems, the essential variation of the probability is restricted to 
narrow regions around the maximum points and the approximations be- 
hind this formula are justified. (For instance, the error introduced by 
extending the integration limits to infinity is negligible.) 3' can now be 
determined by the requirement that ~ P ] ( n )  = O. 

The picture we now have about Pl based upon (50) and the consider- 
ations above is the following. Up to and above the first probability 
maximum, nl, the P '  contribution in (50) is negligible compared to P,. 
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Between n I and the minimum n3, the P '  contribution grows in importance 
according to (52), and above n 3 it is given by (53). As this expression is 
proportional to P,, this decaying state again follows the stationary distribu- 
tion with, however, a certain factor and changed sign compared to the first 
peak. For any sum of Ps(n), the two peaks and the narrow regions around 
these dominate the sums. Following our formalism, we have the following: 

The contribution to ~Ps(n) from the first peak is 

; (x t 2 = P~(nl) dxexp ~ = (2~rol)l/2P,(nO 
1 

The corresponding contribution from the second peak is 

2 = (2~r~ 
2 

In ~,Pl(n), these regions again dominate and the respective contributions 
around the peaks are proportional to these expressions. 

For the first peak, n = n 1, 

el(nl)~e,(nl)  
and the contribution to ~Pl(n) is (2~rol)l/2P,(nl). For the second peak, 
n = n 2, P1 is given by (50) and (53): 

Pl(n2) ~ - Ps(n)[ S132"lr(Ol(I3)l/2w1 l ( n 3 )  ~ - -  1] 

The contribution to ~.P](n) is this expression with n = n 2 multiplied by 
(2~'O2) 1/2. 

If ~,~'Pl(n) = 0, these two contributions must cancel, i.e., 

(2~ro,)l/2es(nl) = (2~'o2) l/2P,(n2)[ S132~(o,o3)'/2w~ l(n3) T - 1 ] 

Thus 

(Ol/O2)1/2S12 -.t-. l 
= ( 5 4 )  

"[ 20r(Olo3)l/2s13wll(n3) 

where Sl2 = P~(nl)/P,(n2) is the quotient between the potential maxima for 
the stationary distribution. It is generally (except at phase transition points) 
much smaller or larger than 1 (depending on which maximum dominates). 
Assuming that the first peak is the largest one, we get 

Wl(n3) 
7 = 2~r(0203)]/2 $23 (55) 

$23 is equal to P,(n2)/P,(n3), i.e., the quotient between the probability at 
the second (smaller) maximum and at the minimum. The inverse value 
represents the very small probability to get a large fluctuation to the value 
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n s if one originally had n -- n 2. It is the appropriate generalization of the 
Boltzmann factor e -~E/kr. 

1 / y V  represents a very large lifetime of a decaying state. If P1 is the 
function defined according to (50) and (51), a general time-dependent 
function can be written as 

P(n,t)  = Ps(n) + constP,(n)e -vv` 

The constant can here be chosen according to the initial situation. If it is 
equal to - 1, the above description shows that the first peak at n = n 1 is 
compensated for at t = 0, which means that the initial state is almost 
entirely distributed around n = n 2. If instead, the constant was chosen as 
-Ps(n2)/P](n2) (which is a positive quantity), the peak at n =/'12 is 
eliminated at t = 0. A transition rate can be defined as the initial decay rate 
(i.e., the time derivative) of the probability around the initial point. The 
transition rate from a low state to the highest maximum is given by V 7. 

As representing the transition rate, (55) is equivalent to the Kramers O9) 
result. His method can be directly used in this case if the nonlinear 
Fokker-Planck equation is appropriate. The result for the latter equation is 
the same as (55) if $23 represents the corresponding quotient between the 
probability function of the maximum and minimum. (This quotient in 
general differs for the two kinds of equations.) 

We end this section with some qualitative remarks. First, we note that 
(55) seems to be good also for moderately large values of V. In particular, 
we have studied the situation of Fig. 4, where V = 20, and compared an 
exact 7 value calculated directly from (49) with that of (54) using the 
features of the stationary solution in Fig. 4a. In this case, the first two 
figures (nonzero) agree. 

A general feature, mentioned earlier, is seen from Fig. 5, namely, that 
z(x) varics very little between the extremal points. In the case shown there, 
which should be typical for the Schlrgl model, [z[ is never larger than 0.1. 
This has two important consequences. First, it is small enough to allow a 
good description by the nonlinear Fokker-Planck equation according to 
the earlier discussion. It seems to be a fair conclusion that the FP can be 
used with great confidence for describing the relative variation of the 
probability function around and between the stable points in the Schlrgl 
model. This also explains the good agreement for phase transitions found 
by Horsthemke eta/ .  (4) We emphasize that this conclusion, which is 
quantitative rather than qualitative, does not follow from their conclusions, 
nor does Kurtz's paper (11) tell anything about that situation. 

The other consequence is that much larger systems are needed to get 
extreme relaxation times than in the model of Section 5. For the case of 
Fig. 4, the relaxation time is not very large even if the first stable point, nl, 
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is equal to 1000. Turner (3) has studied the approach to a stationary state by 
numerically solving the master equation for a similar model in a compara- 
tively small system. When parameters were changed, the average value was 
eventually given by the dominant maximum, and no hysteresis was seen. 
This seems to be an effect of the smallness of the system, and of the low 
values of z. For a sufficiently large system (probably 1-2 orders of 
magnitude larger than was considered), the relaxation time 1/V7 is large 
enough to prevent transitions during meaningful times. Then, hysteresis 
would have been seen. 

7. DISCUSSION AND EXTENSION OF THE RESULTS 

We shall here make a summary of the most important features of this 
work, and also discuss some possible extensions. First, we have in some 
detail explored a method for obtaining solutions of the master equation, 
earlier introduced by Kubo et al. (5) and G6rtz and Walls. (6) This method is 
well suited for providing the logarithm of the probability function in a 
general stationary situation. The asymptotic features come out in a very 
suitable way. The time-dependent situation, described in Section 4, can be 
treated by this method for points away from extremal points of the 
stationary distribution (the stationary points in a deterministic description). 
Close to such extremal points, the method fails and it should be comple- 
mented by other methods. It is quite possible to do that, and such problems 
are taken up in another paper by Leimar eta/. (17) 

One might hope that the method could be used for cases with several 
stochastic variables. There are large difficulties of treating the master 
equation in such cases, and the general form of the G6rtz-Walls method, 
which leads to a highly nonlinear partial differential equation, does not 
seem to be very tractable. It is important to investigate this further. One 
possibility is to make an expansion around a probability maximum of the 
same kind as in Section 2 [formula (18)]. As discussed earlier in this work, 
higher-order terms yield information about deviations between the two 
types of main equations. The method by Gardiner and Chaturvedi (l~ is 
probably also useful in such cases. 

We next point out that the z function of the main method seems to 
provide a direct connection to thermodynamic quantities. For a system 
close to equilibrium and at constant temperature and pressure, the loga- 
rithm of the probability function is of course related to the free enthalpy, G. 
For a chemical reaction, the important quantity is the affinity, which, of 
course, is the change of G in the reaction. For a simple reaction such as 

kl 
2 B ~ C  

k2 
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the affinity is 

k2nc 
A =/~(nc) - 2/L(nB) ---- Rrln klnZ 

The expression in the logarithm is the quotient of the total reaction velocity 
going to the left and that going to the right. Comparison with the formalism 
in Section 2, in particular formula (6), shows that the z function shall be 
identified with A/RT (or a multiple of it). In that case, z is the logarithm of 
a quotient between the total velocity by which n is decreased by 1 and that 
by which n is increased by 1. The essential difference to the equilibrium 
situation (where detailed balance is valid) is that the expression in (6) 
involves the sums of all velocities by which the species X is changed in all 
reactions. Of these, the most rapid one often dominates. Such a dominance 
is not found close to equilibrium because detailed balance is valid and all 
reactions are equally important for providing the fluctuations. In that case, 
each reaction will separately contribute to G by its affinity. For the system 
driven far from equilibrium, it seems that the natural generalization is a 
dynamic affinity involving the rates of all reactions. It seems quite reason- 
able that a rapid reaction dominates the situation in the driven case. In 
fact, a similar expression is used for the driven chemical potential differ- 
ence over a biological membrane where ions are kept at different concen- 
trations by active transport. The potential difference is described by the 
standard Goldman equation, (21) which contains a logarithm of a quotient 
between an outgoing ionic electric current and an ingoing one. Again, such 
an expression is motivated by the special situation, and the current of the 
ions that masses the membrane most easily (normally the potassium ions) 
dominates the potential. 

When making the connections to thermodynamics, one should there- 
fore consider such a kinetic affinity, and not use the sum of the affinities of 
the single reactions (at least not in a case as described here). The interpreta- 
tion of the affinity is simple in formula (6). In a general case, it shall still be 
proportional to our z 0, given by the solution of (9). For several varying 
molecule species, the situation is still worse, but, at least formally, it can be 
introduced in the same way. We remark that an extension of thermody- 
namic relations based upon the stationary solution of the master equation is 
also given by J/ihnig and Richter. (22) Their )t is the same as z in this work. 

A significant part of this work has been devoted to the study of 
Fokker-Planck type of equations. We have argued that in order to describe 
the mutual importance of several structures of the probability function, it is 
necessary to consider relative variations. The important quantity is the 
logarithm of the probability function. Such a global picture of many 
structures is not covered by Kurtz's paper, (11) and represents a more 
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general view of the situation than the asymptotic representation by 
Horsthemke et al.(4'7) In general cases, the nonlinear Fokker-Planck equa- 
tion is not a good approximation for the logarithm of the probability 
function (and still less a correct asymptotic representation of it) outside a 
small fluctuation region around a probability maximum. As shown by 
example, the FP can completely fail to give the mutual importance of two 
probability maxima. 

Still, in special but important cases, the FP and the master equation 
agree quite well over large regions. This is particularly the case for a 
one-step process where the reaction rates are given by low-order polynomi- 
als of the molecule numbers (they can likewise be described by quotients of 
such polynomials). Almost all models which have been used in these 
connections earlier are indeed of that type, which shows that the nonlinear 
Fokker-Planck equation should be able to be used with confidence in a 
number of problems. Little is known about the situation of several vari- 
ables. It is quite possible that the arguments about a one-step process 
remain the same (for instance, third-order moments will again be the same 
as the first-order ones). If this is valid, the nonlinear Fokker-Planck 
equation is satisfactory, which would lead to a great advantage since it is a 
linear partial differential equation with possibilities for obtaining approxi- 
mate solutions. A master equation does not seem to be tractable in any 
easy way for several variables. 

A third important problem treated here is the calculation of transition 
times by the eigenvalue method in Section 4. In Section 6, a general 
formula for a global transition time between two stable states was derived 
for the master equation. For a large system, this time becomes so large that 
it is meaningless. The analysis of the transition is still important for a 
relatively small system. If the stable states involve a particle number of, say, 
about 1000, the transitions do not take extremely long times. This can be 
the situtation in a living cell, where the number of certain molecule species 
(as enzymes) may be of the order 100-1000 or still lower. Then, asymptotic 
forms are valid, multiple stable states may well occur, and the transition 
times will be quite meaningful. 

This is also the case for local fluctuations in a larger system. In fact, 
the global picture given here (and in many other works) should be comple- 
mented to a local picture where diffusion effects in the space are taken into 
account (see, e.g., Ref. 1). For a transition between two stable states, the 
global transition time can be meaningless when it is as in Section 5. 
However, local fluctuations in a small region can provide a transition in a 
shorter time and form a nucleation for further transition. To treat this, it 
should be relevant to make a cell division of the total system, and consider 
diffusion between the cells. The size of the cells should be given by some 
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Fig. 6. The model with flow between two subsystems. 

effective free mean path of the relevant molecules, and described by the 
picture in this work. 

We here make a preliminary discussion of this problem in order to 
show some important features. The situation is then simplified and the 
system of interest is divided in two subsystems as in Fig. 6, where the 
particle numbers may differ and a corresponding flow of particles arise. If 
x~ and x 2 are the particle densities in the subsystems, the following 
equations are obtained for the average numbers: 

:q = D(x  - x , )  +  l(Xl) 
k 2 = D ( x ,  - x2) + a,(x2) 

a 1 is, as before, the first moment  of the w. We have used the following 
particular choice of a l :  

O~I(X ) = (1 - x)(3 - x)(5 - x) 

This is a typical expression that one obtains from the Schl6gl model, and is 
used earlier in Figs. 3 and 4. Without diffusion (D = 0), x = 1 or 5 are 
stable states, and x = 3 is an unstable one corresponding to a minimum of 
the probability. We show solution curves and stationary points for the 
combined system in Fig. 7a for D -- 1. In Fig. 7b, the stationary points are 
shown as functions of varying D. The following features are found. 

When D is small, stationary points are found when x 1 and x 2 are close 
to the values 1, 3, or 5. If  both are close to 1 or 5 (stable values without 
diffusion), the point is stable. If one of x 1 or x 2 is close to 3, one gets a 
saddle point corresponding to a point of minimum probability that must be 
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Fig. 7. The features by the diffusion model of two subsystems as discussed in the text. (a) 
Time evolution curves and stationary points with D = 1, and other quantities as in the text. A 
shows the homogeneous,  stable points, B a stable, intermediate state, and C and D unstable 
saddle points, which are more favorable for the transition than the unstable E. (b) The 
stationary branches as function of the diffusion constant  D. The letters have the same 
meaning as in (a). Branches of the same letter yield the x I and x 2 values of the same solutions. 

crossed for a transition. In this case, one subsystem can make a transition 
between the stable states almost independently of the other subsystem. As 
an intermediate state, one obtains a stable distribution where the subsys- 
tems are in different states. 
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For larger D values, the diffusion becomes more and more important. 
The saddle points then approach the stable intermediate where they merge 
at a certain value of D. Thereafter, there is no stable distribution with 
different values of x 1 and x 2 but the earlier stable intermediate rather 
corresponds to a stable point. Again, this is a point of smallest probability 
that must be passed during a transition. At still higher values of D, all 
stationary distributions with different values of x l and x 2 vanish. The 
situation is then the same as the global one in Section 6 and the entire 
system acts as an entity. 

This example may be very simple, but the general features are obvious, 
and will be found also in general cases. For small values of the diffusion 
constant, small regions of the systems act independently of each other, and 
stable intermediate states with inhomogeneous particle distributions arise. 
Such local features are lost for larger values of D, when the entire system 
behaves in a homogeneous way. 

It is the hope that this problem can be treated by stochastic methods. 
As in Chapter 6, the main emphasis is to be put upon the saddle point, 
which must be passed and which determines the transition time. This will 
be further developed in later work. 

APPENDIX 

We demonstrate here some mathematical properties of equations (10) 
and (11), which we rewrite here as 

R 

y, [w (y I) + w_ (y - I)] = = 0 (A) 
r=l 

pw_ r T =  F n = 0  (B) 

Equation (A) has a pole of order R at the origin, and a rooty  = 1. Equation 
(B) is the same as (A) except for this root and the pole. 

We now have the following: 
(1) Every equation of the form 

N M - - I  

F~vM(y ) = ~, any n -  ~, b,~v"= 0 
n = n  n = 0  

where M > 0, and all a n, b n are positive, has one and only one positive root. 
This can be proved by induction. Assume it is true for a polynomial of 

degree N -  1. Then, it is true for F~r It is clear that FNM(0 ) < 0, that 
F~M(0 ) < 0, if M > 1, and that F~vM(y) > 0 for sufficiently large values of 
y.  Thus there is at least one positive root and one positive y where F is 
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minimum. The assumption of the induction proof tells that this minimum is 
the only possible extremal point of FNM for positive y. Because the 
minimum must occur between y = 0 and a positive root, there cannot be 
more than one root. Further, it is clear that if M -- 0, i.e., all b n are absent, 
the equation cannot have any positive root. Thus an equation with M = 1 
has no minimum, and there cannot be more than one root. This confirms 
the induction. Clearly, Eq. (B) is of this form. Thus this equation has a 
unique, positive root, Y0- We will now show the distribution of the remain- 
ing roots. 

(2) Besides the roots Y0 and 1 [for (A)], there are R - 1 roots, complex 
or negative with absolute values less than min(yo, 1), and R - 1 complex or 
negative roots with absolute values larger than max(y 0, 1). 

This can be shown by consideration of argument variation for complex 
y in Eq. (A). First, we note that F A attains large, positive values for very 
small and very large positive values of y. F A -- 0 has only two real roots at 
y = 1 and y = Y0, as shown above. It follows that F~ is negative between 
these y values. 

Now, consider a circle in the complex y space with y = pe i*. The real 
part of F A (y) is then 

R 

~, (w r + w_r)(p~cosr~p - 1) = ReF~(pU ~) 
r = l  

Clearly, for given p, this expression is largest when r = 0 as all w~ are 
positive. If P is between 1 and Y0, this largest value is F a (p). According to 
what was said above, this value is negative. Thus the real part is always 
negative when r is varying. When y goes around the corresponding circle in 
the complex plane, F a cannot go around the origin (because then the real 
part must change sign). From the argument criterion then follows that there 
are as many zeros as poles inside the y circle. The pole at the origin of order 
R is counted R times, thus there are R zeros: the smallest of 1 a n d y  0 and 
R - 1 other, which can be negative or complex with absolute value smaller 
than p. Since this is true for all p between 1 and Y0, the R - 1 zeros must 
have absolute values smaller than min(1, Y0). There cannot be any zero 
with absolute value between 1 a n d y  0. Since (A) in total has 2R zeros, there 
must be R -  1 ones which are negative or complex with absolute values 
larger than max(l,  Y0)- 
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